第33章 灭霸降世
进入基地后,和工作人员寒暄了一下,伙伴们继续讨论木星。
霉国宇航局于1972年3月发射了"先驱者"10号探测器,这是第一个探测木星的使者,它穿越危险的小行星带和木星周围的强辐射区,经过一年零九个月,行程10亿千米,于1973年10月飞临木星,探测到木星规模宏大的磁层研究了木星大气传回了三百多幅木星图像。
1973年4月霉国又发射了"先驱者"11号探测器,1974年12月5日到达木星。它离木星表面距离最短仅仅有46万千米,比"先驱者"10号更近。送回了有关木星磁场、辐射带、重力、温度、大气结构等情况,并观测到了木星南极地带。
1977年8月20日和9月5日,霉国先后发射了旅行者1号和旅行者2号。
旅行者1号和旅行者2号探测器这两个姊妹探测器沿着两条不同的轨道飞行。负责探测太阳系外围行星。发射一百天后,旅行者1号超过旅行者2号,并先期到达木星考察。1979年3月5日,旅行者1号在距木星275万公里处与木星会合,拍摄了木星及其卫星的几千张照片并传回地球。通过这些照片可以发现木星周围也有一个光环,还探测到木星的卫星上有火山爆发活动。旅行者2号于1979年7月9日到达木星附近,从木星及其卫星中间穿过,在距木星72万公里处拍摄了几千张照片。
"伽利略"号探测器于1989年升空,1995年12月伽利略号木星探测器抵达环木星轨道。它旅行了28亿英里,它的终结日期比原来预计的晚了六年。伽利略号绕木星飞行了34圈,获得了有关木星大气层的第一手探测资料,在1995年将一个探测器放到了木星上。它发现在木星的卫星欧罗巴(europa)、ganymede、callisto的地下有咸水,还发现木星卫星上有剧烈的火山爆发。
"伽利略"号探测器在2003年年9月21日坠毁于木星,以此结束其近14年的太空探索生涯。这将是霉国宇航局自1999年以来首次控制探测器在地球之外的天体上坠毁。
霉国宇航局2008年11月宣布,已将木星定为下一个探索天空的远大目标,nasa在2011年8月发射一个新的木星探测器"朱诺",展开对木星的深入探测,该探测器首先绕地球运行至2013年,利用地球引力将"朱诺"弹射到外太阳系;预计在2016年中期到达木星轨道。此后,"朱诺"每年大约绕木星运转32圈,探测木星内部的结构情况;测定木星大气成分;研究木星大气对流情况以及探讨木星磁场起源和磁层,通过它的探测,科学家希望了解木星这颗巨行星的形成、演化和本体内部结构以及木星卫星等。全部任务计划于2017年10月结束。
"朱诺号"探测器于2018年2月7日上午在第11次近距离飞越这颗气态巨行星时,采用了彩色增强的延时图像序列拍摄。
2018年2月,霉国航空航天局(nasa)公布了由"朱诺"号卫星拍摄到的一组木星南极的图像,醒目的蓝色旋涡以华丽的图案扭曲变幻,创造了令人惊叹的奇观。
2019年10月7日,国际天文联合会宣布在土星周围发现了20颗新卫星,使土星以总数82颗击败木星,成为拥有最多卫星的行星。这些卫星每个直径约5公里,其中17个绕土星逆行旋转。此前,木星雄踞“卫星之王”榜首达20年,共拥有79颗自然卫星。
国际天文学联合会小行星观测中心称,这些卫星中有17颗为逆行卫星,即运行方向与土星自转方向相反,另外3颗为顺行卫星。在这20颗新卫星中,离土星最近的两颗卫星围绕土星运行一圈大约需要两年时间,而最远的卫星则需要大约三年才能绕土星运行一圈。
对木星的考察表明:木星正在向其宇宙空间释放巨大能量。它所放出的能量是它所获得太阳能量的两倍这说明木星释放能量的一半来自于它的内部。木星内部存在热源。
众所周知,太阳之所以不断放射出大量的光和热,是因为太阳内部时刻进行着核聚变反应,在核聚变过程中释放出大量的能量。木星是一个巨大的液态氢星球,本身已具备了无法比拟的天然核燃料,加之木星的中心温度已达到了28万k,具备了进行热核反应所需的高温条件。至于热核反应所需的高压条件,就木星的收缩速度和对太阳放出的能量及携能粒子的吸积特性来看,木星在经过几十亿年的演化之后,中心压可达到最初核反应时所需的压力水平。
木星和太阳的成分十分相似,但是却没有像太阳那样燃烧起来,是因为它的质量太小。木星要成为像太阳那样的恒星,需要将质量增加到如今的100倍才行,根据天文学家的计算,天体质量至少要大于太阳质量的7,才能进行聚变反应,发出光和热。一旦木星上爆发了大规模的热核反应,以千奇百怪的旋涡形式运动的木星大气层将充当释放核热能的"发射器"所以,有些科学家猜测,再经过几十亿年之后,木星将会改变它的身份,从一颗行星变成一颗名副其实的恒星。
1993年3月24日,霉国天文学家尤金·苏梅克和卡罗琳·苏梅克以及天文爱好者戴维·列维,利用霉国加州帕洛玛天文台的46厘米天文望远镜发现了一颗彗星,遂以他们的姓氏命名为苏梅克-列维9号彗星。这颗彗星被发现一年零两个多月后,于1994年7月16日至22日,断裂成21个碎块,其中最大的一块宽约4公里,以每秒60公里的速度连珠炮一般向木星撞去。
2009年7月21日,熬大利亚一位业余天文爱好者安东尼·卫斯理,在凌晨1点利用自家后院的145英寸反射式望远镜发现木星被彗星或者小行星撞击,在木星表面留下地球般大小的撞击痕迹。霉国航空航天局喷气推进实验室在20日晚上9点证实了卫斯理的发现,并于21日证实木星在过去相当短一段时间内再次遭遇其他星体撞击,使木星南极附近落下黑色疤斑撞击处上空的木星大气层出现一个地球大小的空洞。
2010年6月3日,熬洲的业余天文学家天文爱好者观测到一颗彗星的撞击,造成小于以前观测到的事件。稍后,另一位匪绿饼的业余天文学家也录影捕捉到这次事件。
在1953年,米勒-尤里实验证明了闪电和存在于原始地球大气中的化合物组合可以形成有机物(包括氨基酸),可以做为生命的基石。这模拟的大气成分为水、甲烷、氨和氢分子;所有的这些物质都在现今的木星大气层中被发现。木星的大气层有强大的垂直空气流动,运载这些化合物进入较低的地区。 但在木星的内部有更高的温度,会分解这些化学物,会妨碍类似地球生命的形成。
在木星,因为在木星的大气层中只有少量的水,还有任何的固体表面都在深处压力极大的地区,因此被认为不可能存在任何类似地球的生命。在1976年,在航海家任务之前,曾经假设基于氨与水的生命可能在木星大气层的上层进化。这一假设是基于地球的海洋态环境,顶层有简单的光合作用浮游生物,低层的鱼可以喂食这些生物,而肉食的海洋生物可以猎食这些鱼。
在木星的一些卫星,地表之下可能有海洋存在,导致这些卫星有生物存在的可能性更大。
木星,因为在夜晚以肉眼很容易就看见它,当太阳的位置很低时,偶尔也能在白天看见,因此自古以来就为人所知。在巴比伦,这个天体代表他们的神马尔杜克。他们用木星轨道大约12年绕行黄道一周来定义它们生肖的星宫。
木星的隔壁就是土星。虽然只有少量的直接资料,但土星的内部结构仍被认为与木星相似,即有一个被氢和氦包围着的核心。岩石核心的构成与地球相似但密度更高。在核心之上,有更厚的液体金属氢层,然后是数层的液态氢和氦层,在最外层是厚达1000公里的大气层,也存在着各种型态冰的踪迹。估计核心区域的质量大约是地球质量的9-22倍。土星有非常热的内部,核心的温度高达11700c,并且辐射至太空中的能量是它接受来自太阳的能量的25倍。大部分能量是由缓慢的重力压缩(克赫历程)产生,但这还不能充分解释土星的热能制造过程。额外的热能可能由另一种机制产生:在土星内部深处,液态氦的液滴如雨般穿过较轻的氢,在此过程中不断地通过空气旋转而产生热能量。
土卫六又叫泰坦星,据说是灭霸的故乡。灭霸一心想毁灭地球,把泰坦星建设成第二地球。其实所谓的“第二地球”只不过是一个笑话,灭霸真正的目的是毁灭地球和地球人,然后让自己的永恒一族统治宇宙罢了。说到灭霸,小帅一行人说:“这都是几万年前的电影了,几万年以来谁在土卫六上见过外星人?更别提灭霸了!他要是真实存在,我就是灭霸他爸。”
土星外围的大气层包括963的氢和325的氦,可以侦测到的气体还有氨、乙炔、乙烷、磷化氢和甲烷。上层的云由氨的冰晶组成,较低层的云则由硫化氢铵(nhhs)或水组成。相对于太阳所含有的丰富的氦,土星大气层中氦的丰盈度明显高很多。
对于比氦重的元素的含量,如今所知不甚精确;但如果假设与太阳系形成时的原始丰盈度是相当的,则可估算出这些元素的总质量是地球质量的19-31倍,而且大部分都存在于土星的核心区域。
土星的上层大气与木星相似(在相同定义的前提下),同样都有着显而易见的条纹;但土星的条纹比较幽暗,并且赤道附近的条纹也比较"幽色"。从底部延展至大约10公里高处,是由水冰构成的层次,温度大约是-23c。在这之后是硫化氢氨冰的层次,延伸出另外的50公里,温度大约在-93c,在这之上是80公里的氨冰云,温度大约是-153c。接近顶部,在云层之上200~270千米是可以看见的云层顶端,由数层氢和氦构成的大气层。土星的风速是太阳系中最高的,旅行者号的数据显示土星的东风最高可达500m/s(1800公里/时)。直到旅行者探测器飞越土星,比较纤细的条纹才被观测到。然而从那之后,地基望远镜也被改善到在通常情况下都能够观察到土星的这些细纹。
土星的大气层通常都很平静,偶尔会出现一些持续较长时间的长圆形特征,以及其他在木星上常常出现的特征。1990年,哈勃太空望远镜在土星的赤道附近观察到一朵极大的白云,是在航海家与土星遭遇时未曾看见的,在1994年又观察到另一朵较小的白云风暴。1990年的白云是大白斑的一个例子,这是在每一个土星年(大约30个地球年),当土星北半球夏至的时候所发生的独特但短期的现象。之前的大白斑分别出现在1876、1903、1933和1960年,并且以1933年的最为著名。如果这个周期能够持续,下一场大风暴将在大约2020年发生。
来自卡西尼号太空船的最新图像显示,土星的北半球呈现与天王星相似的明亮蓝色。这种蓝色非常可能是由瑞利散射造成的,但因为当时土星环遮蔽住了北半球,因此从地球上无法看见这种蓝色。
旅行者号的影像中最先被注意到的是一个长期出现在78°n附近,围绕着北极的六边形漩涡。不同于北极,哈勃太空望远镜所拍摄到的南极区影像有明显的"喷射气流",但没有强烈的极区漩涡,也没有"六边形的驻波"。但是,nasa报告卡西尼号在2006年11月观测到一个位于南极像飓风的风暴,有着清晰的眼壁。这是很值得注意的观测报告,因为在过去除了地球之外,没有在任何的行星上观测到眼壁云(包括伽利略号太空船在木星的大红斑上都未能发现眼壁云)。
在北极的六边形中每一边的直线长度大约是13800公里,整个结构以10h39m24s自转,与行星的无线电波辐射周期一样,这也被认为是土星内部的自转周期。这个六边形结构像大气层中可见的其他云彩一样,在经度上没有移动。
这个现象的规律性的起源仍在猜测之中,多数的天文学家认为是在大气层中某种形式的驻波,但是六边形也许是一种新型态的极光。在实验室的流体转动桶内已经模拟出了多边型结构。
土星北极点的上方存在着和木星表面的大红斑是令人着迷的景象--因为一个特殊而持续存在的六角形风暴。土星上一天的时间很短暂,2013,行星科学家认为,六角形风暴的循环能基本准确地反映出土星一天的时长:10小时39分23秒。与其他的气体巨星一样,土星缺少坚实的地表,因此科学家无法利用其地表测量它的自转周期。此外,土星表层大气在赤道附近的运动速度也比其在极点附近的运动速度快。
许多行星科学家利用磁场释放出的无线电推算天体的自转周期,因为科学家假设这些无线电是从星球的深层内部释放出来的,那里的自转周期更加稳定。然而,对于土星而言,这种推测方法遇到了阻碍:从土星南北半球释放出的无线电有15分钟左右的时间差。
相对而言,六角形风暴的循环更加稳定,因此可以作为推断自转周期的一个关键因素。研究者将卡西尼号土星探测器拍摄到的时间跨度为5年半的图像结合在一起加以分析,发现六角形风暴的循环周期几乎不会发生变化。这一发现暗示:可蔓延数百公里的六角形风暴与星球的内部关系密切,因此它是土星真实自转速度的一个有效标示。
土星有一个简单的具有对称形状的内在磁场--一个磁偶极子。磁场在赤道的强度为02高斯(20μt),大约是木星磁场的20分之一,比地球的磁场微弱一点;由于强度远比木星的微弱,因此土星的磁层仅延伸至土卫六轨道之外。磁层产生的原因很有可能与木星相似--由金属氢层(被称为"金属氢发电机")中的电流引起。与其他的行星一样,土星磁层会受到来自太阳的太阳风内的带电微粒影响而产生偏转。卫星土卫六的轨道位于土星磁层的外围,并且土卫六的大气层外层中的带电粒子提供了等离子体。
土星表面也有沿赤道伸展的条纹带,表面被云层覆盖。
通过天文望远镜,我们可以看到土星表面也有一些明暗交替的带纹平行于它的赤道面,带纹有时也会出现亮斑、暗斑或白斑。白斑的出现不很稳定,最著名的白斑于1933年8月被英国天文爱好者w·t·海用小型天文望远镜发现此白斑位于土星赤道区,蛋形,长度达土星直径的1/5。以后这块白斑逐渐扩大,几乎蔓延到土星的整个赤道带。
土星极地附近呈绿色,是整个表面最暗的区域。根据红外观测得知云顶温度为-170c,比木星低50c。土星表面的温度约为-140c。
由于这颗行星表面温度较低而逃逸速度又大(356公里/秒),使土星保留着几十亿年前它形成时所拥有的全部氢和氦。因此,科学家认为,研究土星的成分就等于研究太阳系形成初期的原始成分,这对于了解太阳内部活动及其演化有很大帮助。一般认为土星的化学组成像木星,不过氢的含量较少。土星上甲烷含量比木星多,氨的含量则比木星少。
虽然没有土星内部结构直接的信息,但人们还是认为它的内部结构类似木星。现代认为,土星形成时,起先是土物质和冰物质吸积,继之是气体积聚因此土星有一个直径2万公里的岩石核心。这个核占土星质量的10到20,核外包围着500公里厚的冰壳,再外面是8000公里厚的金属氢层金属氢之外是一个广延的分子氢层。
1969年,一架飞机在地球大气高层对土星的热辐射作了红外观测,发现土星和木星一样,它辐射出的能量是它从太阳接收到的能量的两倍。这表明土星和木星一样有内在能源。后来"先驱者"11号的红外探测证实了这一点,测得土星发出的能量是从太阳吸收到的25倍。
土星大气以氢、氦为主,并含有甲烷和其他气体,大气中飘浮着由稠密的氨晶体组成的云。从望远镜中看去这些云像木星的云一样形成相互平行的条纹,但不如木星云带那样鲜艳,只是比木星云带规则得多,土星云带以金黄色为主,其余是橘黄、淡黄等。土星的表面同木星一样,也是流体。它赤道附近的气流与自转方向相同速度可达每秒500米,比木星风力要大得多。在土星北极有一个形状是正六边形的巨大风暴,跨度15000英里,差不多能装下4个地球,是土星上和木星大红斑类似的长时间维持的大型风暴圈。
1610年,意大利天文学家伽利略观测到在土星的球状本体旁有奇怪的附属物。1659年,荷兰学者惠更斯证实这是离开本体的光环。当时观测到土星环有5个(1979年先驱者11号又探测到两个新环)。1675年意大利天文学家卡西尼,发现土星光环中间有一条暗缝(后称卡西尼环缝),他还猜测光环是由无数小颗粒构成。两个多世纪后的分光观测证实了他的猜测,但在这二百年间,土星环通常被看作是一个或几个扁平的固体物质盘。直到1856年,英国物理学家麦克斯韦从理论上论证了土星环是无数个小卫星在土星赤道面上绕土星旋转的物质系统。
土星环位于土星的赤道面上。在空间探测前,从地面观测得知土星环有五个,其中包括三个主环(a环、b环、c环)和两个暗环(d环、e环)。b环宽又亮,它的内侧是c环,外侧是a环。a、b两环之间为宽约4800公里的卡西尼缝,是天文学家卡西尼在1675年发现的,产生环缝的原因是因为光环中有卫星运行,卫星的引力造成的。b环的内半径91500公里,外半径116500公里,宽度25000公里,可以并排安放两个地球。a环的内半径121500公里,外半径137000公里,宽度15500公里。c环很暗,它从b环的内边缘一直延伸到离土星表面只有12000公里处,宽度约19000公里。1969年在c环内侧发现了更暗的d环,它几乎触及土星表面。在a环外侧还有一个e环,由非常稀疏的物质碎片构成,延伸在五六个土星半径以外。1979年9月"先驱者"11号探测到两个新环--f环和g环。f环很窄,宽度不到800公里,离土星中心的距离为233个土星半径,正好在a环的外侧。g环离土星很远,展布在离土星中心大约10~15个土星半径间的广阔地带。"先驱者"11号还测定了a环、b环、c环和卡西尼缝的位置、宽度,其结果同地面观测相差不大。"先驱者"11号的紫外辉光观测发现,在土星的可见环周围有巨大的氢云,环本身是氢云的源。
除了a环、b环、c环以外的其他环都很暗弱。土星的赤道面与轨道面的倾角较大,从地球上看,土星呈现出南北方向的摆动,这就造成了土星环形状的周期变化。仔细观测发现,土星环内除卡西尼缝以外,还有若干条缝,它们是质点密度较小的区域,但大多不完整且具有暂时性。只有a环中的恩克缝为永久性,不过,环缝也不完整。科学家认为这些环缝都是土星卫星的引力共振造成的,犹如木星的巨大引力摄动造成小行星带中的柯克伍德缝一样。"先驱者"11号在a环与f环之间发现一个新的环缝,称为"先驱者缝",还测得恩克缝宽度为392公里。由观测阐明土星环的本质要归功于美国天文学家基勒,他在1895年从土星环的反射光的多普勒频移发现土星环不是固体盘,而是以独立轨道绕土星旋转的大群质点。土星环掩星并没有把被掩的星光完全挡住,这也说明土星环是由分离质点构成的。1972年从土星环反射的雷达回波得知环的质点是直径介于4到30厘米之间的冰块。
探测器传回的土星照片让科学家非常吃惊,在近处所看到的土星环,竟然是一大片碎石块和冰块,使人眼花缭乱。它们的直径从几厘米到几十厘米不等,只有少量的超过1米或者更大,土星周围的环平面内有数百条到数千条大小不等,形状各异的环。大部分环是对称地绕土星转的,也有不对称的有完整的、比较完整的、残缺不全的。环的形状有锯齿形的,也有辐射状的。令科学家迷惑不解的是,有的环好像是由几股细绳松散的搓成的粗绳一样,或者说像姑娘们的发辫那样相互扭结在一起。辐射状的环更是令科学家大开了眼界而又伤透了脑筋,组成环的物质就像车轮那样,步调整齐地绕着土星转,这样岂不要求那些离得越远的碎石块和冰块运动的速度越快吗这显然违背了已经掌握的物质运动定律。那么,这是一个什么样的规律在起作用呢这一切仍在探索中。
霉国航空航天局(nasa)的科学家于2009年10月8日发现土星周围存在一个"隐形"的巨大光环,这个光环可以容纳10亿个地球。nasa喷气推进实验室称,该光环平面与土星主光环面成27度倾角,该光环内侧距离土星约595万公里,宽度约1190万公里它的直径相当于300倍土星的直径。可容纳大约10亿个地球。光环由冰和尘埃微粒组成,它们之间的距离如此之大,即使你站在光环上也看不清楚,另外土星照射到的太阳光线很少,光环反射出的可见光更少,令它难以被发现组成光环的尘埃温度很低,仅有-193c,但却散发出热辐射。nasa斯皮策太空望远镜正是捕捉到这些热辐射,才发现了这个巨大的光环。
土星卫星"菲比"的轨道穿越该光环。科学家们认为,光环内的冰和尘埃来自于菲比与彗星的碰撞。光环的发现可能有助于解释关于土星另一卫星土卫八的一个古老而神秘的问题。天文学家卡西尼1671年首次发现土卫八,称这个星球一面黑一面白,就像太极符号一样。新发现的光环旋转轨道与土卫八相反。科学家们推测,光环内的尘埃飞溅到土卫八表面上,形成了黑色区域。"长久以来,航天学者一直认为菲比与土卫八表面之上的黑色物质之间存在某种联系,新发现的光环为此提供了令人信服的证据。"新光环的发现者之一、马里兰大学专家道格拉斯·汉密尔顿说。
土星以平均每秒964公里的速度斜着身子绕太阳公转,其轨道半径约为14亿公里,公转速度较慢,绕太阳一周需295年,可是它的自转速度很快,赤道上的自转周期是10小时14分钟。
土星和其他行星一样,也围绕太阳在椭圆轨道上运动。土星绕太阳公转的轨道半径约为954天文距离单位(约14亿公里)轨道的偏心率为0056,轨道面与黄道面交角为2°5′,绕太阳公转一周约295年,公转平均速度约为96公里/秒。
土星同太阳的距离在近日点时和在远日点时相差约15亿公里。
土星也有四季,只是每一季的时间要长达7年多,因为离太阳遥远,夏季也是极其寒冷的。
土星的自转很快,仅次于木星,其自转角速度随纬度而不同,在赤道上自转周期为10小时14分,在纬度60°处为10小时40分。由于快速自转,使得它的形状变扁,是太阳系行星中形状最扁的一个。
2019年1月,科学家基于美国宇航局卡西尼号探测器在2017年9月被摧毁之前收集到的数据,研究出土星自转的时长:10小时33分38秒。
土星的光环由无数个小块物体组成,它们在土星赤道面上绕土星旋转。土星还是太阳系中卫星数目仅次于木星的一颗行星,周围有许多大大小小的卫星紧紧围绕着它旋转,就像一个小家族。近几年随着观测技术的不断提高大行星卫星的数量急剧攀升,现已发现的土星卫星已是82颗。土星卫星的形态各种各样,五花八门使天文学家们对它们产生了极大的兴趣。最著名的"土卫六"上有大气,是太阳系已知的有大气卫星中的一员。
土星有一个显著的环系统,主要的成分是冰的微粒和较少数的岩石残骸以及尘土已经确认的土星的卫星有62颗,其中9个是1900年以前发现的。其中,土卫六是土星系统中最大和太阳系中第二大的卫星(半径2575km)(太阳系最大的卫星是木星的木卫三半径2634km),比行星中的水星还要大;并且土卫六是唯一拥有明显大气层的卫星土卫一到土卫十按距离土星由近到远排列为:土卫十、土卫一、土卫二、土卫三、土卫四、土卫五、土卫六、土卫七、土卫八、土卫九。土卫十离土星的距离只有159,500公里,仅为土星赤道半径的266倍,已接近洛希极限。这些卫星在土星赤道平面附近以近圆轨道绕土星转动。
土星有众多的卫星。精确的数量尚不能确定,所有在环上的大冰块理论上来说都是卫星,而且要区分出是环上的大颗粒还是小卫星是很困难的。到2009年,已经确认的卫星有62颗(2019年已经确认了82颗),其中52颗已经有了正式的名称;还有3颗可能是环上尘埃的聚集体而未能确认。许多卫星都非常的小:34颗的直径小于10公里,另外13颗的直径小于50公里,只有7颗有足够的质量能够以自身的重力达到流体静力平衡。
1980年,当旅行者号探测器飞过土星时,在原有的九颗卫星(土卫一、土卫二、土卫三、土卫四、土卫五、土卫六、土卫七、土卫八和土卫九)基础上,又发现了八颗新的卫星。但是很难说土星究竟有多少卫星。一些组成土星光环的较大的粒子实际上也许就是小卫星。土星在太阳系中拥有的卫星最多。跟木星卫星不一样,土星卫星不能简单地以成分和密度归类划分。"旅行者号"所发现的卫星显示出复杂多样的特征。
除土卫六外,天文学家从"旅行者号"飞船发回的资料发现,土星的其他卫星都比较小,在寒冷的表面上都有陨击的疤痕,像破碎了的蛋壳。土卫一表面上有一个直径达128公里的陨石坑;土卫二有着荒凉的平原、陨石坑和断皱的山脊,它的不同区域代表着不同的历史时期;土卫三上有一个又深又宽,长约800公里的裂谷;土卫四表面有稀疏而明亮的条纹,它们都环绕着陨石坑。
2019年10月,国际天文学联合会小行星中心宣布,研究人员在土星周围新发现20颗卫星。这20颗新发现的土星卫星每颗直径仅约5公里,其中17颗是逆行卫星,即绕土星运转方向与土星自转方向相反;另3颗为顺行卫星。它们都属于距土星较远的外层卫星,其中一颗逆行卫星是迄今已知距土星最远的卫星。依照轨道倾角的不同,土星的外层卫星被划分为北欧群、高卢群和因纽特群。新发现的卫星中,有两颗顺行卫星被归入因纽特群,研究人员认为这两颗卫星与该群其他成员一样,都是由一颗大卫星在遥远的过去分裂而成。17颗逆行卫星被划入北欧群,它们可能也曾同属于一颗更大的卫星。还有一颗顺行卫星轨道倾角与高卢群卫星相似,但其轨道半径比包括高卢群成员在内的其他顺行卫星都大得多。
正说着,忽然听见警报响起,同时有人说:“木星外围来了个怪人,看起来有点儿像灭霸。”“所有人紧急集合,敌人来袭!”
小冲意味深长地看着小帅:“不知道灭霸他爸能不能治灭霸?”