µ±Ç°Î»Ö㺿´ÊéС˵ > ÆäËûС˵ > Éîºì»ù½ð»á > ¹ØÓÚ±¾Îij£ÓÃÁ¿¼¶¾ø¶ÔÎÞÇîµÄ²¿·Ö¹¹Ôì1£¨ÖÕ¼«-L£©

¹ØÓÚ±¾Îij£ÓÃÁ¿¼¶¾ø¶ÔÎÞÇîµÄ²¿·Ö¹¹Ôì1£¨ÖÕ¼«-L£©

<< ÉÏÒ»Õ ·µ»ØĿ¼ ÏÂÒ»Õ >>
    Ð´ó-»ùÊý¹«ÀíºÍÖÕ¼«-l³ÌÐò³çêÌØ-Âó¿¨ÀÕÄ·ÕªÒª

    ÎÒÃǽ«¿¼ÂÇһЩеĴó»ùÊý¹¹Ôì - erties£¬Ã¿¸ö¼«ÏÞÐòÊý ~£¾0 µÄ a - ¾Þ´ó»ùÊý£¬³¬ - ¾Þ´ó»ùÊý£¬Ã¿¸ö¼«ÏÞÐòÊý a £¾0 µÄ¾Þ´ó»ùÊý£¬ÒÔ¼°³¬ - ¾Þ´ó»ùÊý¡£¶ÔÓÚ¼«ÏÞÐòÊý a £¾0£¬a - ¾Þ´ó»ùÊýºÍ³¬¾Þ´ó»ùÊýÔÚ i3 ºÍ i2 Ö®¼ä¾ßÓÐÒ»ÖÂÐÔÇ¿¶È¡£a-¾Þ´ó»ùÊýºÍ³¬-¾Þ´ó»ùÊýµÄÒ»ÖÂÐÔÇ¿¶È´óÓÚ10£¬ÒÔ¼°hugh woodin¹ØÓÚºÏÊÊÀ©Õ¹Æ÷Ä£Ð͵ÄÂÛÎĵڶþ²¿·ÖÌÖÂÛµÄËùÓдó»ùÊý¹«Àí£¬²»ÖªµÀÓëzfc²»Ò»Ö²¢ÇÒÒ»ÖÂÐÔÇ¿¶È´óÓÚ10¡£À­¶û·ò¡¤ÐÁµÂÀÕºÍά¶àÀûÑÇ¡¤¼ªÌØÂüÒѾ­·¢Õ¹ÁËÐéÄâ´ó»ùµÀ¾ßµÄ¸ÅÄ²¢ÇÒ¿ÉÒÔÇå³þµØÀí½â¡°¼¸ºõÊǾ޴óµÄ¡±ºÍ¡°¼¸ºõ³¬¾Þ´óµÄ¡±µÄ¸ÅÄî¡£¼ÙÉè v = hod£¬Ò»¸ö¿É²â»ùÊý¿ÉÒÔÖ¤Ã÷ÊÇ vir - tually hyper - ¾Þ´ó¡£Ê¹ÓÃÔÚµÚ 6 ½ÚÖиø³öµÄÖÕ¼« - l µÄ¶¨Ò壬Éù³ÆÊÇÕýÈ·µÄ¶¨Ò壬¼ÙÉèÿ¸ö¼«ÏÞÐòÊý a £¾0 ´æÔÚÒ»¸öÊʵ±µÄ a-¾Þ´ó»ùÊýÀ࣬¿ÉÒÔÖ¤Ã÷£¬Èç¹û v µÈÓڸö¨ÒåÒâÒåÉϵÄÖÕ¼« - l£¬ÄÇô¿ÉÒԵóöÒ»¸ö¼¸ºõ w-¾Þ´óµÄ»ùÊýÊÇÀ­Ä·Æë»ùÊýµÄ¼«ÏÞ¡£

    ÎÒÃÇ¿ÉÒÔÒýÈ볬¾Þ´ó»ùÊýµÄ¸ÅÄÆäÇ¿¶ÈÂÔµÍÓÚ³¬¾Þ´ó»ùÊý£¬²¢ÇÒ¿ÉÒÔÖ¤Ã÷£¬ÔÚ²»¼ÙÉèÑ¡ÔñµÄÉÏÏÂÎÄÖУ¬×÷Ϊ³õµÈǶÈëj£ºvx +2£¼vx +2µÄÁÙ½çµãµÄ»ùÊý±ØÈ»Êdz¬¾Þ´ó»ùÊý¡££¨¼ÙÉèÒÀÀµÑ¡Ôñ¹«ÀíºÜ¿ÉÄÜÒ²¿ÉÒÔÖ¤Ã÷ËüÊdz¬µÄ - ¾Þ´óµÄ£¬µ«Ç°Ò»¸öÃüÌâÊǽÓÏÂÀ´ËùÐèÒªµÄ¡£»ùÓÚÕâ¸ö¼û½â£¬ÎÒÃÇ¿ÉÒԵõ½ÕâÑùµÄ»ù±¾Ç¶ÈëµÄ´æÔÚʵ¼ÊÉÏÓëzfÍêÈ«²»Ò»ÖµĽá¹û¡£

    ×îºó£¬¶ÏÑÔÿ¸ö¼«ÏÞÐòÊý a £¾0 ¶¼ÓÐÒ»¸öÊʵ±µÄ a-¾Þ´ó»ùÊýÀ࣬¿ÉÒÔÖ¤Ã÷°µÊ¾ÁËÖÕ¼« - l ²ÂÏëµÄÒ»¸ö°æ±¾¡£

    ¹Ø¼ü´Ê£ºÖÕ¼«-l³ÌÐò£¬´ó»ùÊý¡£msc £º03e45£¬

    03e55

    ÖÂÎÒÐÄ°®µÄÆÞ×Ómari mnatsakanyan£¬Ã»ÓÐËý£¬ÕâÏ×÷ÊDz»¿ÉÄܵġ£

    ÐµĴó»ùÊý¹«ÀíºÍÖÕ¼« - l ³ÌÐò3

    ÖÂл ÐÝ¡¤Î鶡¶ÔÕâÏ×÷µÄһЩÔçÆڲݰ¸ÌṩÁ˷dz£ÓÐÓõķ´À¡£¬ÆäÖжÔa-¾Þ´ó»ùÊýµÄ¸ÅÄîÌá³öÁËһЩ²»ÁîÈËÂúÒâµÄ¶¨Ò壬Îҷdz£¸ÐлËûµÄ°ïÖú¡£

    ÔÚÏÂÎÄÖУ¬ÎÒÃǽ«½éÉÜһЩеĴóÐÍ - »ùÊý¸«Í· - ioms £¬ÒÔ¼°ËüÃǵÄÓ¦Óá£ÈÃÎÒÃÇÊ×ÏȽéÉÜÒª¿¼ÂǵÄдó»ùÊýÊôÐԵĶ¨Òå¡£

    1 дó»ùÊýÊôÐԵĶ¨Òå ¶¨Òå 11¼ÙÉèÕâÊÇÒ»¸ö¼«ÏÞÐòÊý£¬Ê¹µÃ £¾0¡£ÎÒÃÇ˵һ¸ö²»¿ÉÊýµÄÕýÔò»ùÊýkÊÇÒ»¸ö¾Þ´óµÄ£¬Èç¹û´æÔÚÒ»¸öµÝÔöµÄ»ùÊýÐòÁУ¨kb £º¦Â£¼ a£©£¬Ê¹µÃvx£¬£¼ v¶ÔÓÚËùÓÐb£¼a£¬²¢ÇÒÈç¹ûn£¾1ºÍ£¨;£ºi £¼ n£©ÊÇÒ»¸öСÓÚaµÄµÝÔöÐòÊýÐòÁУ¬ÄÇôÈç¹ûbo¡Ù0£¬ÄÇô¶ÔÓÚËùÓÐb&39;£¼boÓÐÒ»¸ö»ù±¾Ç¶Èëj£ºvrb _£¼ vrb _£¬ÁÙ½çµãΪ1kgrºÍj£¨kbr£©= kb £¬²¢ÇÒj£¨kb £©=kb1¶ÔÓÚËùÓÐiʹµÃ0¡Üi£¼n -2£¬Èç¹ûbo = 0ÔòÓÐÒ»¸ö»ù±¾Ç¶Èëj£ºvrg _ vka _£¬ ÁÙ½çµã k &39;£¼ ko ºÍ j £¨ k &39;£©= ko ºÍ j £¨ kb £©=kb4£¬¶ÔÓÚËùÓÐ i ÕâÑùµÄ 0¡Ü i £¼ n -2¡£

    ¶¨Òå 12Ò»¸ö»ùÊý k ʹµÃ k ÊÇ k - ¾Þ´ó±»³ÆΪ³¬ - ¾Þ´ó

    ¶¨Òå 13¼ÙÉèÕâÊÇÒ»¸ö¼«ÏÞÐòÊý£¬Ê¹µÃ £¾0£¬²¢ÇÒ £¨ rg £º b £¼ a £© ÓëÒ»¸ö×åÒ»Æð

    fµÄ³õµÈǶÈë¼ûÖ¤ÁËÕâÊÇÒ»¸ö - ¾Þ´óµÄ£¬Ö»ÓÐÒ»¸öǶÈëÔÚ¼Ò×åÖÐ

    f ¼û֤ÿ¸öСÓÚ a µÄÐòÊýÓÐÏÞÐòÁÐµÄ - ¾Þ´óÐÔ¡£¼ÙÉè¸ø¶¨ÈκÎСÓÚ a µÄÐòÊý £¨b £º i £¼ w£© µÄ w-ÐòÁУ¬ÓÐÒ»¸ö¾ßÓÐÁÙ½çÐòÁÐ £¨s £¬£º i £¼ w µÄ»ù±¾Ç¶Èë j £ºv1+1v1+1£©£¬Í¨¹ý½« f ÖÐÃ÷Ï﵀ w-ǶÈëÐòÁÐÕ³ºÏÔÚÒ»Æð¶ø»ñµÃ£¬ÆäÖÐ È룺= ÉÏРkibn ¡¤½øÒ»²½¼ÙÉèÓÐÒ»¸ö³õµÈǶÈë k £º v £¼ m£¬¹Ì¶¨ËùÓдóÓÚ ¡° µÄÕýÔò»ùÊý£¬vcmand £¨ va +1£© va +1;ºÍ kva = jv Èç¹û b £º= supnew bn £¼ a £¬ÔòÉè p £º= kg £¬·ñÔòÉè p £º= k ¡£¼ÙÉ裬ÿµ±ÎÒÃÇÓÐ vi +1 scv ºÍ s e l £¨va + i £©[ x ] ÆäÖÐ x £º=£¨ e £¬¡°8;£º i £¼ n £© ¶ÔÓÚij¸öÓÐÏÞÐòÊý n

    ÆäÖÐÿ¸ö e ÊÇÁÙ½çµã´óÓÚ £¾ µÄ»ù±¾Ç¶È룬e µÄÁÙ½çÐòÁеÄÉÏÈ·½çºÍ d ÊdzɶԷÇÖظ´£¬ºÍ k£¨s£© c s£¬ÄÇôÎÒÃÇÓÐ k£¨s£©£¼ s¡£Èç¹ûËùÓÐÕâЩÌõ¼þÂú×㣬Ôò»ùÊýk³ÆΪ-¾Þ´ó¡£¶¨Òå 14Ò»¸ö»ùÊý k ʹµÃ k ÊÇ k - ¾Þ´ó±»³ÆΪ³¬ - ¾Þ´ó

    ÎÒÃǺܿ콫ȷ¶¨ a - ¾Þ´ó»ùÊýºÍ³¬¾Þ´ó»ùÊýÏà¶ÔÓÚ i2 ÊÇÒ»Öµġ£ÎÒÃÇ»¹½«È·¶¨ - lish a - ¾Þ´ó»ùÊýºÍ³¬ - ¾Þ´ó»ùÊý±È i0 »òÈκÎÆäËûÒÑÖªÓë zfc ²»Ò»ÖµÄÏÈÇ°µÄ - ´ó - »ùÊý¹«Àí¾ßÓиü´óµÄÒ»ÖÂÐÔÇ¿¶È¡£×îºóÒ»½Ú½«¼òÒªÌÖÂÛ¶¨Òåԭʼ±íÊöµÄÁé¸ÐÀ´Ô´£¬Õâ¿ÉÒÔ×÷Ϊ¼ÙÉèÕâЩ´ó»ùÊýÓëzfcÒ»ÖµÄһЩ¶¯»ú£¬Ðø¼¯ÖÐÖ¤Ã÷µÄ½á¹û¿ÉÄÜ»áΪ¼ÙÉèÒ»ÖÂÐÔÌṩһЩ¶îÍâµÄ¶¯»ú¡£

    ÈÃÎÒÃÇÊ×ÏÈÈ·¶¨¼«ÏÞÐòÊý £¾0 µÄ a - ¾Þ´ó»ùÊýºÍ³¬ - ¾Þ´ó»ùÊýµÄÒ»ÖÂÐÔÇ¿¶ÈÑϸñ½éÓÚ 13 ºÍ i2 Ö®¼ä¡£

    2 - ¾Þ´ó»ùÊýºÍ³¬¾Þ´ó»ùÊýµÄÒ»ÖÂÐÔÇ¿¶È ¶¨Òå 21»ùÊý k ±»³ÆΪ i3 »ùÊý£¬Èç¹ûËüÊdzõµÈǶÈë j £ºv2£¼v2 µÄÁÙ½çµã¡£i3 ÊǶÏÑÔ - ¶ÏÑÔ i3 »ùÊý´æÔÚ£¬i3£¨k £¬0£© ÊǶÏÑÔµÚÒ»¸öÓï¾ä¶ÔÌض¨µÄÐòÊý¶Ô k ³ÉÁ¢£¬Ê¹µÃ k £¼¡£ ¶¨Òå 22»ùÊý k ±»³ÆΪ 12 »ùÊý£¬Èç¹ûËüÊdzõµÈǶÈëµÄÁÙ½çµã j £º v £¼ m ʹµÃ v2 c m ÆäÖÐ×îСÐòÊý´óÓÚ k ʹµÃ j £¨0£©=8i2 ÊǶÏÑÔ i2 »ùÊý´æÔÚ£¬i2£¨ k £¬£© ÊǵÚÒ»¸öÓï¾ä¶ÔÌض¨ÐòÊý¶Ô k ³ÉÁ¢µÄ¶ÏÑÔ£¬ÕâÑùk£¼8¡£

    ÔÚ±¾½ÚÖУ¬ÎÒÃÇÏ£ÍûÖ¤Ã÷ a - ¾Þ´ó»ùÊýºÍ³¬¾Þ´ó»ùÊýµÄÒ»ÖÂÐÔÇ¿¶ÈÑϸñÔÚ 13 µ½ 12 Ö®¼ä¡£

    ¶¨Àí 23¼ÙÉè k ÊÇ w - ¾Þ´óµÄ£¬Èç £¨ ki £º i £¼ w £© Ëù¼ûÖ¤µÄÄÇÑù¡£È»ºóÓÐÒ»¸öÕý¹æµÄ³¬ÂË×Ó u ÔÚ ko ÉÏ£¬Ê¹µÃËùÓÐ k&39;£¼ ko µÄ¼¯ºÏʹµÃ i3£¨k&39;£¬8£© ¶ÔÓÚ´óÔ¼ 8£¼ ko£¬ÊÇ u µÄ³ÉÔ±¡£

    Ö¤Ã÷¡£¼ÙÉè k ÊÇ w - ¾Þ´ó£¬²¢ÇÒ £¨ k £º i € w £© µ½ - gether Óëij¸ö×å f µÄ»ù±¾Ç¶Èë¼ûÖ¤ k µÄ w - ¾Þ´óÐÔ¡£¿ÉÒÔ¼ÙÉèÔÚ²»Ëðʧһ°ãÐÔµÄÇé¿öÏ£¬fÖÐËùÓоßÓÐÁÙ½çµãkoµÄǶÈ붼²úÉúÏàͬµÄ

    ÐµĴó»ùÊý¹«ÀíºÍÖÕ¼« - l ³ÌÐò 5

    ko Éϵķ¨Ïß³¬ÂË×Ó£¬ÔÚÏÂÎÄÖÐÓà u ±íʾ¡£ÎÒÃÇ¿ÉÒÔʹÓ÷´ÉäÀ´ÏÔʾ ko £¼ ko=&34;&34; belonging=&34;&34; to=&34;&34; any=&34;&34; fixed=&34;&34; member=&34;&34; of=&34;&34; u=&34;&34; ,=&34;&34; such=&34;&34; that=&34;&34; (k2,=&34;&34; ko=&34;&34; ,k1),=&34;&34; together=&34;&34; with=&34;&34; a=&34;&34; certain=&34;&34; family=&34;&34; fo=&34;&34; of=&34;&34; elementary=&34;&34; embeddings=&34;&34; ,=&34;&34; witness=&34;&34; w=&34;&34; -=&34;&34; tremendousness=&34;&34; of=&34;&34; k=&34;&34; =&34;&34; then=&34;&34; we=&34;&34; can=&34;&34; repeat=&34;&34; this=&34;&34; procedure=&34;&34; to=&34;&34; find=&34;&34; a=&34;&34; k1=&34;&34; belonging=&34;&34; to=&34;&34; the=&34;&34; same=&34;&34; fixed=&34;&34; member=&34;&34; of=&34;&34; u=&34;&34; such=&34;&34; that=&34;&34; k=&34;&34;£¾£¼£¾£¼ ko=&34;&34; ,=&34;&34; such=&34;&34; that=&34;&34; (k2,k1,k0,k1,),=&34;&34; together=&34;&34; with=&34;&34; a=&34;&34; certain=&34;&34; family=&34;&34; fi=&34;&34; of=&34;&34; elementary=&34;&34; embeddings=&34;&34; ,=&34;&34; witness=&34;&34; w=&34;&34; -=&34;&34; tremendousness=&34;&34; of=&34;&34; k=&34;&34; =&34;&34; we=&34;&34; can=&34;&34; continue=&34;&34; in=&34;&34; this=&34;&34; way=&34;&34; ,=&34;&34; and=&34;&34; we=&34;&34; can=&34;&34; also=&34;&34; ar=&34;&34; -=&34;&34; range=&34;&34; things=&34;&34; so=&34;&34; that=&34;&34; there=&34;&34; is=&34;&34; a=&34;&34; sequence=&34;&34; of=&34;&34; embeddings=&34;&34; jn=&34;&34; :=&34;&34; v=&34;&34;£¾£¼ vk=&34;&34; ,=&34;&34; with=&34;&34; critical=&34;&34; point=&34;&34; 2=&34;&34; for=&34;&34; all=&34;&34; n=&34;&34;£¾1 µÄ´æÔÚ£¬Ëü¿ÉÒÔͨ¹ýÓÕµ¼À´Ñ¡Ôñ£¬Ê¹µÃ¶ÔÓÚÿ¸ö n £¾1£¬¶ÔÓÚËùÓÐ m Óë im Ïà¸É£¬Ê¹µÃ1£¼ m £¼ n £¬ÒÔ¼°À´×Ô fn µÄÁÙ½çÐòÁÐÒÔ £¨k£¬k1,¿ªÍ·µÄǶÈëk £¬2£© ¿ÉÒÔÑ¡Ôñ£¬ÒÔ±ãÓë ÖÐÏà¸É¡£Í¨¹ýÕâÖÖ·½Ê½£¬ÎÒÃǵõ½Ò»¸öÐòÁÐ £¨£¬£º n £¼ w£© ºÍÒ»¸ö¾ßÓÐÇ°ÃæËùÊöÊôÐÔµÄǶÈë jn ÐòÁС£¶ÔÓÚÈκθø¶¨µÄ u ÔªËØ´æÔÚÕâÑùÒ»¶ÔÐòÁУ¬¾Í»á²úÉúËùÉùÃ÷µÄ½á¹û¡£

    ¶¨Àí 24¼ÙÉè k ÊÇ i2 »ùÊý¡£È»ºóÓÐÒ»¸ö nor - mal ultrafilter u on k רעÓÚ³¬ - ¾Þ´óµÄ»ùÊýÖ¤Ã÷¡£¼ÙÉè k ÊÇ i2 »ùÊý£¬²¢ÈóõµÈǶÈë - ¶¡ j £º v £¼ m ÓëÁÙ½çµã k ¼ûÖ¤£¬¼´ i2 »ùÊý£¬ÁÙ½çÐòÁеÄÉÏÈ·½çΪ ¡£Èç¹ûÎÒÃÇÈà u ÊÇ k É쵀 ul - ±éÀú¹ýÂËÆ÷£¬ÎÒÃÇ¿ÉÒÔºÜÈÝÒ×µØÖ¤Ã÷ k&39;£¼ k µÄ¼¯ºÏʹµÃ´æÔÚÒ»¸ö»ù±¾Ç¶Èë k £ºv3v8£¬ÆäÁÙ½çÐòÁÐÓÉ k&39; ×é³É£¬ºó¸ú j µÄÁÙ½çÐòÁУ¬ÊÇ u µÄ³ÉÔ±£¨ÒÔÏÂÓà x ±íʾ£©¡£È»ºóÊôÓÚÕâ¸ö¼¯ºÏµÄÐòÊýÐòÁУ¬Á¬Í¬¿ÉÒÔ´ÓǶÈëÐòÁУ¨k£ºk&39;€ x£©µ¼³öµÄǶÈ뼯ºÏ£¬Ö¤Ã÷kÊdz¬¾Þ´óµÄ¡£ÓÉÓÚ k ÔÚ m ÖÐÒ²Êdz¬¾Þ´óµÄ£¬Òò´ËÆÚÍûµÄ½á¹ûÈçÏ¡£

    ÕâÍê³ÉÁËa-¾Þ´ó»ùÊýºÍ³¬-¾Þ´ó»ùÊýÑϸñÔÚi3ºÍi2Ö®¼äµÄÒ»ÖÂÐÔÇ¿¶ÈµÄÖ¤Ã÷¡£ÔÚÏÂÒ»½ÚÖУ¬ÎÒÃǽ«ÌÖÂÛ - ¾Þ´óºÍ³¬ - ¾Þ´ó»ùÊýµÄÒ»ÖÂÐÔÇ¿¶È¡£

    3 - ¾Þ´óºÍ³¬ - ¾Þ´ó»ùÊýµÄÒ»ÖÂÐÔÇ¿¶È

    ÎÒÃÇÏ£ÍûÖ¤Ã÷ a - ¾Þ´ó»ùÊýºÍ³¬ - ¾Þ´ó»ùÊýµÄÒ»ÖÂÐÔÇ¿¶È´óÓÚÈκÎÏÈÇ°µÄ con - ±ßÐδó - »ùÊý¹«Àí£¬²»ÖªµÀÓë zfc ²»Ò»Ö¡£

    Âó¿¨ÀÕÄ·

    ÎÒÃǽ«´Ó¶¨Òå[2]ÖÐÌÖÂÛµÄһЩ´ó»ùÊý¹«Àí¿ªÊ¼¡£

    ¶¨Òå 31ÎÒÃÇ˵ÐòÊý£¾Âú×ãÀ­ÎÖ¹«Àí£¬Èç¹ûÒÔÏÂÌõ¼þ³ÉÁ¢¡£ÓÐÒ»¸ö¼¯ºÏ n£¬Ê¹µÃ v1+1cncv+2 ºÍÒ»¸ö³õµÈǶÈë j £º l £¨ n £©£¼ l £¨ n£©£¬Ê¹µÃ£º

    £¨1£© n = l £¨ n £© n vx +2 ºÍ crit£¨ j £©£¼ x ;(2£© nn c l £¨ n £©;£¨3£© ¶ÔÓÚËùÓÐ f £º va +1¡ú n \{ w } ʹµÃ f ¡Ê l £¨ n £© ´æÔÚ g £º vx +1¡ú vx +1 ʹµÃ g € n ²¢ÇÒ¶ÔÓÚËùÓÐ a €v1+1£¬ g £¨ a £©€ f £¨ a £©¡£

    ÎÒÃǽ«ÔÚµÚ6½Úĩβ³ÂÊöÒ»¸öÒýÓÃÀ­ÎÖ¹«ÀíµÄÖ÷ÕÅ£¬µ«ÔÚ±¾½ÚÖв»ÔÙ½øÒ»²½Ìá¼°¡£¶¨Òå 32ÎÒÃǽ«ÐòÁÐ £¨ ea £¨ va + i £©£º a £¼ tva +1£© ¶¨ÒåΪ×î´óÐòÁУ¬Ê¹µÃÒÔÏÂÐòÁгÉÁ¢¡£

    £¨1£© e £¨ va +1£©= l £¨ va +1£© n va +2 ºÍ e £¨ va +1£©= l £¨ va +1£©£© nva +2£¨2£©¼ÙÉèÒ»¸ö£¼ tv£¬¶øaÊǼ«ÏÞÐòÊý¡£ÄÇô e £¨v1+1£©= l £¨ u { eg £¨ va +1£©£º b £¼ a }£© nva +2

    £¨3£©¼ÙÉèÒ»¸ö+1£¼ tv¡±¡£È»ºó¶ÔÓÚһЩ x € e +1£¨ v +1£©£¬e £¨ vi +1£©£¼ x £¬ÆäÖÐÎÒÃǵÄÒâ˼ÊÇ´æÔÚÒ»¸ö³¬Éä¦Ð£ºva +1¡ú e £¨ vi +1£© Óë t e l £¨ x £¬ v +1£©£¬e +1£¨ vi +1£©= l £¨ x £¬v1+1£© n v1+2£¬Èç¹û +2£¼ tvs +1£¬Ôò ea +2£¨ va +1£©= l £¨£¨ x £¬ vx +1£©£© n vx +2¡£

    £¨4£©¼ÙÉèÒ»¸ö£¼ tv ÄÇô´æÔÚxcvi +1£¬Ê¹µÃe£¨vi +1£©cl£¨x£¬v1+1£©²¢ÇÒÓÐÒ»¸öÊʵ±µÄ»ù±¾em - ´²ÉÏÓÃÆ·j £º l £¨ x £¬ va +1£©£¼ l £¨ x £¬ va +1£©£¬ÕâÒâζ×ÅjÊÇÁÙ½çµãµÍÓÚ£¾µÄ·Çƽ·²£¬¶ÔÓÚËùÓÐx&39;€ l £¨ x £¬v1+1£© nvx +2£¬´æÔÚÒ»¸öy € l £¨ x £¬v1 + 1£© n vi +2£¬Ê¹µÃ£¨x£¬£º i £¼ w £© e l £¨ y £¬v1+1£©£¬ÆäÖÐxo = x &39; and xt4+1= j £¨x1£© ¶ÔÓÚËùÓÐi ¡Ý0¡£

    £¨5£©¼ÙÉèÒ»¸ö£¼ tv¡°ÊÇÒ»¸ö¼«ÏÞÐòÊý£¬Éèn = e£¨vx +1£©¡£

    then either

    £¨ Ò» £©£¨ cof £¨ om £©£©l £¨ n £©£¼È룬»ò

    £¨ ¶þ £©£¨ cof £¨¨’ n £©£©2£¨ n £©£¾¡· ºÍijЩ z € n £¬ l £¨ n £©=£¨ hodv £¬1u£¨2£©£©2£¨ n £©¡£

    ÕâÀï on = sup { ol £¨ x v +1£©£º x € n } ÆäÖÐ oxvx +1£© ÊÇÐòÊý y µÄÉÏÈ·½ç£¬¿ÉÒÔ×÷ΪÓò v1+1 µÄ³¬ÉäµÄÓàÓò£¬ÆäÖÐÉäÊÇ l £¨x£¬ vi +1£© µÄÔªËØ¡£

    £¨6£©¼ÙÉèÒ»¸ö+1ÊǼ«ÏÞÐòÊý£¬²¢Éèn = e£¨v3+1£©¡£

    then either

    ÐµĴó - »ùÊý¹«ÀíºÍÖÕ¼« - l ³ÌÐò

    £¨ Ò» £©£¨ cof £¨ on £©£©l £¨ n £©£¼£©£¬ ºÍ eo +1£¨ va +1£©= l £¨ na £¬ n £© n va +2£¬ »ò

    £¨ ¶þ £©£¨ cof £¨ on £©£©z£¨m £©£¾ l ºÍ ea +1£¨ va +1£©= l£¨£¨n£©£¬ n £© n va +2£¬ÆäÖÐ e£¨n£© ÊdzõµÈǶÈë k £º n £¼ n µÄ¼¯ºÏ¡£

    ¶¨Òå n £º= l £¨ u { e £¨ v +1£©| a £¼ tv }£© n v +2 ¼ÙÉè cof £¨ on £©£¾Èë ºÍ l £¨ n £©¡Ù£¨ hodvs + iu £¨ z £© e £¨ m £© ¶ÔÓÚËùÓÐ z e n£¬²¢ÇÒ½øÒ»²½´æÔÚÒ»¸ö´øÓÐcrit£¨j£© £¼£¾ µÄ»ù±¾Ç¶Èë j£ºl £¨ n £© l £¨n£©¡£È»ºóÎÒÃÇ˵£¾Âú×ãÎ鶡¹«Àí¡£

    ¶¨Àí 33¼ÙÉè k ÊÇ w - ¾Þ´óµÄ£¬Èç se - quence £¨ kin £º n £¼ w £© Ëù¼ûÖ¤µÄÄÇÑù¡£ÄÇôvroÊÇÒ»¸öÄ£ÐÍ£¬ÓÃÓÚ¶ÏÑÔÓÐÒ»¸öÂú×ãwoodin¹«ÀíµÄxµÄÊʵ±Àà¡£

    Ö¤Ã÷¡£¼ÙÉ趨Àí³ÂÊöÖиø³öµÄ¼ÙÉèºÍ·ûºÅ¡£Èç¹ûÎÒÃÇÈà Èë £º= sup { kn £º n £¼ w }£¬Ôò´æÔÚÒ»¸ö¾ßÓÐÁÙ½çÐòÁÐ £¨ kn £º n £¼ w £© µÄ»ù±¾Ç¶Èë j £º va +1£¼ vx +1 £©¡£ÏÔÈ»£¬Ëü×ãÒÔÖ¤Ã÷Âú×ãÎ鶡¹«Àí£¬Ò²¿ÉÒÔÖ¤Ã÷Âú×ãÀ­ÎÖ¹«Àí£¬¼ÙÉè v = od£¬ixinvie

    ¼ÙÉèÒ»¸ö¼¯ºÏÐòÁУ¨e£¨v1+1£©£ºÒ»¸ö£¼b£©Âú×ãÎ鶡¹«Àí¶¨ÒåµÄÒªÇó£¨1£©-£¨6£©£¬Ïà¶Ô»¯Îªvk£¬¶ÔÓÚijЩ¦Â¡ÜµçÊÓ£¬²¢¶¨ÒånΪegµÄΨһ¿ÉÄܺòÑ¡ÈÕÆÚ£¨Èç¹û´æÔÚ£©¡£³¬ÏÞ¹éÄÉ·¨¿ÉÒÔÖ¤Ã÷l£¨j£¨n£©uv +1£© nv = l£¨n£©nv¡£È»ºó£¬¿¼Âǵ½j¶ÔÕâÑùÒ»¸önµÄÔªËصÄ×÷ÓÃÊÇÓÉj¾ö¶¨µÄ|v£¬²¢ÇÒʹÓÃw-¾Þ´óÐԵļÙÉ裬¿ÉÒÔͨ¹ý³¬ÏÞÓÕµ¼Ö¤Ã÷j¶Ôl£¨n£©vµÄÏÞÖÆÊÇl£¨n£©nvk£¼l£¨n£©n vkµÄ»ù±¾Ç¶È룬ÔÚb£¼tva + iµÄÇé¿öÏÂÊǺÏÊʵģ¾£ºÕâÑù¾ÍÍê³ÉÁËÂÛÖ¤¡£

    ÕâÍê³ÉÁËÒ»¸ö - ¾Þ´óºÍ³¬ - ¾Þ´óµÄ»ùÊý±ÈÈκÎÒÔǰδ֪²»Ò»Ö嵀 zfc µÄ±ßÀ©Õ¹¾ßÓиü´óµÄÒ»ÖÂÐÔÇ¿¶ÈµÄÖ¤Ã÷¡£

    4 virtually a - enormous and hyper - enormous cardinals

    À­¶û·ò¡¤ÐÁµÂÀÕ£¨ralf schindler£©ºÍά¶àÀûÑÇ¡¤¼ªÌØÂü£¨victoria gitman£©ÔÚ[4]ÖÐÒýÈëÁËÐéÄâ´ó»ùÊýÐÔÖʵĸÅÄî¡£¸ø¶¨ÈκδóµÄ - »ùÊýÊôÐÔ¡£

    ²Î¿¼¶¨ÒåÒ»¸ö¼¯ºÏ´óСµÄ»ù±¾Ç¶Èëj£ºv v3»ò´ËÀàǶÈëµÄ×壬¶ÔÓ¦µÄÐé´ó»ùÊý¡£

    mccallum

    ÊôÐÔÒÔÏàͬµÄ·½Ê½¶¨Ò壬³ýÁËͨ¹ý»ù±¾ em - ´²ÉÏÓÃÆ· j :(va £©£¼£¨ vb £© ÆäÖÐ j e vg ±íʾ v µÄ¼¯ºÏ·ºÐÍÀ©Õ¹¡£Êµ¼ÊÉÏÊÇÒ»¸ö - ¾Þ´ó»ò³¬ - ¾Þ´ó»ùÊý¸ÅÄîÊÇÃ÷È·µÄ¡£ÎÒÃǽ«ÔÚ±¾½ÚÖгÂÊöÒ»¸ö¹ØÓÚ¼¸ºõ³¬ - ¾Þ´ó»ùÊýµÄ½á¹û£¬²¢½«ÔÚµÚ 6 ½ÚºóÃæ³ÂÊöÒ»¸ö¹ØÓÚ¼¸ºõ w - ¾Þ´ó»ùÊý - nals µÄ½á¹û¡£

    ¶¨Àí 41Èç¹û k ÊÇÒ»¸ö¿É²â»ùÊý£¬²¢ÇÒ v = hod£¬ÔòÔÚ k ÖÐÓÐÒ»¸öÐòÁй²Î²¼ûÖ¤ k µÄÐéÄⳬ¾Þ´óÐÔ¡£

    Ö¤Ã÷¡£¼ÙÉèÁÙ½çµã k µÄ j £º v £¼ m ¼ûÖ¤ÁË k µÄ¿É²âÐÔ¡£È»ºóÓÐÒ»¸ö»ù±¾Ç¶Èëj&39;£ºve +1y£¨mnv2£¨£©+1£©£¬Ëü³öÏÖÔÚmµÄ·ºÐÍÀ©Õ¹ÖУ¨ÕâÀïʹÓüÙÉèv = hod£©¡£µü´ú·´Éä²úÉúËùÐèµÄ½á¹û¡£

    5 inconsistency of the choiceless cardinals

    ºÜÓпÉÄÜ£¬·Çƽ·²³õµÈǶÈë j £º va +2£¼ va +2 µÄÁÙ½çµã¿ÉÒÔÖ¤Ã÷Êdz¬ - ¾Þ´óµÄ¼ÙÉè - È¡¾öÓÚÑ¡Ôñ¹«Àí£¨µ«ÏÔÈ»²»ÊÇÍêÕûµÄÑ¡Ôñ£©¡£È»¶ø£¬ÔÚÏÂÃæµÄÄÚÈÝÖУ¬ÎÒÃÇÖ»ÐèҪʹÓÃÒ»¸ö½ÏÈõµÄ³ÂÊö£¬Ëü¿ÉÒÔÔÚûÓÐÈκÎÐÎʽµÄÑ¡ÔñµÄÇé¿öÏÂÖ¤Ã÷¡£

    ¶¨Òå 51¼ÙÉè a ÊÇÒ»¸ö¼«ÏÞÐòÊý£¬Ê¹µÃ a £¾0£¬²¢ÇÒ £¨k3£º¦Â£¼£© Óë»ù±¾Ç¶ÈëµÄ×å f Ò»Æð¼ûÖ¤ k ÊÇÒ»¸ö¾Þ´óµÄ£¬×å f ÖÐÖ»ÓÐÒ»¸öǶÈë¼ûÖ¤ÁË a - ¶ÔÓÚÿ¸öСÓÚ a µÄÓÐÏÞÐòÊýÐòÁеľ޴óÐÔ¡£¼ÙÉè¸ø¶¨ÈκÎСÓÚ a µÄÐòÊý £¨b;£º i £¼ w£© µÄ w-ÐòÁУ¬ÓÐÒ»¸ö³õµÈǶÈë j £º vi +1 vi +1 ÓëÁÙ½çÐòÁÐ £¨kb £¬£º i £¼ w£©£¬Í¨¹ý½« f ÖÐÃ÷Ï﵀ w-ǶÈëÐòÁÐÕ³ºÏÔÚÒ»Æð¶ø»ñµÃ£¬ÆäÖÐ È룺= supnew kbn ¡¤È»ºó»ùÊý k ±»³ÆΪ - ¾Þ´óµÄ ¡£

    ¶¨Òå 52¼ÙÉè»ùÊý k ÊÇ k - ¾Þ´óµÄ ¡£È»ºó k ±»³ÆΪ³¬ - ¾Þ´óµÄ ¡£

    ÔÚ±¾½ÚÖУ¬ÎÒÃÇÏ£ÍûÖ¤Ã÷ÒÔ϶¨Àí¡£

    ¶¨Àí 53Óë zf ²»Ò»ÖµÄÊÇ´æÔÚÐòÊý x ºÍ·Çƽ·²³õµÈǶÈë j £º vi +2 vi +2¡£

    Ö¤Ã÷¡£Í¬ÑùµÄÍÆÀí±íÃ÷ÿ¸ö i2 »ùÊý k ¶¼ÓÐÒ»¸öÕý̬³¬ÂË×Ó u ¼¯ÖÐÔÚ³¬¾Þ´ó»ùÊýÉÏ£¬ÔÚ zf ÖÐÒ²±íÃ÷£¬Èç¹û k ÊdzõµÈǶÈë va +2£¼ va +2 µÄÁÙ½çµã£¬ÄÇôÓÐÒ»¸öÕý̬³¬ÂË×Ó u ¼¯ÖÐÔÚÐòÁÐ £¨ k ¡££ºÒ»¸ö£¼k£©£¬Ëü¼ûÖ¤ÁËkÊdz¬µÄ - ¾Þ´óµÄ¡£

    ÔÚ[6]ÖУ¬¼Ó²¼Àï°£¶û¡¤¸êµÂ±¤Ò²Ê¹Óõü´úÌ®ËõÇ¿ÆÈÖ¤Ã÷£¬Èç¹ûÕâÖÖǶÈëµÄ´æÔÚÓëzfÒ»Ö£¬ÄÇôËüÒ²ÓëvÊÇÁ¼¿ÉÅÅÐòµÄÒ»Ö£¨Ê¹Óþ®-ÅÅÐò£¬Èç¹ûm£¼nºÍ£¨k £º i e w£©ÊÇjµÄÁÙ½çÐòÁУ¬Ó³Éäjn-mÓ³Éä¾®µÄÏÞÖÆ-ÅÅÐòΪv¡£ ¶Ô¾®µÄÏÞÖÆ - ¶©¹ºµ½ v \ vg £©¡£

    ËùÒÔ¼ÙÉèÕâÁ½¸ö¼ÙÉèµÄºÏÏ࣬ÔÚzfÖУ¬ÉèkÊÇǶÈëµÄÁÙ½çµã£¬ÉèsÊÇÇ°ÃæÌáµ½µÄÐòÁУ¨ka£ºa £¼k£©¡£¶ÔÓÚÿ¸ö a £¼ k£¬Éè e ¡£ÊÇ [a] w Éϵĵȼ۹Øϵ£¬Ëü³ÖÓÐÁ½×éСÓÚ k µÄÐòÊý¡£ÆäÔªËØ°´Ë³Ðò¹¹³ÉÁ½¸ö¿ÉÊýÎÞÏÞ³¤¶ÈµÄÐòÁУ¬µ±ÇÒ½öµ±ËùÌÖÂÛµÄÁ½¸öÐòÁоßÓÐÏàͬµÄβ°Í¡£ÓÐÒ»¸öÐòÁУ¨ c £ºa £¼ k£© ʹµÃ¶ÔÓÚÿ¸ö a £¼ k£¬ca ÊÇ ea µÈ¼ÛÀàµÄÑ¡Ôñ¼¯ºÏ£¬²¢ÇÒ¶ÔÓÚÿ¸ö¾ßÓÐ £¼ b µÄ¶Ô £¨a£¬ b£©£¬µ±Ò»¸öÈË´ÓÒ»¸ö¼ûÖ¤ k µÄ³¬¾Þ´óÐԵĹ̶¨Ç¶Èë×åÖÐÑ¡ÔñÒ»¸ö³õµÈǶÈë j&39; ʱ£¬ÎÒÃÇ¿ÉÒÔÔÚ²»Ëðʧһ°ãÐÔµÄÇé¿öÏÂÑ¡ÔñËü£¬Ê¹µÃ j&39;£¨ca £©= cb¡£È»ºóʹÓÃǶÈëj¿ÉÒÔ½«ÆäÀ©Õ¹µ½Ñ¡Ôñ¼¯ºÏ£¨ca£ºa £¼£¾£©£¬ÕâÑùÈç¹ûÒ»¸ö£¼b£¼k£¬ÄÇô¿ÉÒÔÑ¡ÔñÒ»¸ö»ù±¾Ç¶Èëj&39;£¬ËüÊǼûÖ¤µÄ¹Ì¶¨Ç¶È뼯ºÏµÄÒ»²¿·Ö¡£

    ÕâÔÊÐíÈËÃÇΪ [ x ]¡° ÉϵÄÏàÓ¦µÈ¼Û¹Øϵ e ¹¹ÔìÒ»¸öÑ¡Ôñ¼¯ c¡±¡£·½·¨ÈçÏ¡£¸ø¶¨Ò»¸ö x e [ x ]¡°£¬¸ù¾ÝÎÒÃdzÂÊöµÄ¼ÙÉ裬¶ÔÓÚÈκθø¶¨µÄ n £¾0£¬ÈËÃÇ¿ÉÒÔÕÒµ½Ò»¸ö x&39;¡Ê v£¬Ê¹µÃ x&39;¡Ê[ p ] w ¶ÔÓÚ k1 ºÍ k Ö®¼äµÄ¹²Î²ÐÔ w µÄ p£¬ÒÔ¼°Ç¶Èë ex £¬ n £º vp +1 vi +1£¬ËüЯ´øһϵÁг¬¾Þ´óµÄ  »ùÊý¹²Î²ÔÚ p µ½ j µÄÁÙ½çÐòÁлòÆäβ²¿£¬ ʹµÃ ex £¬ n £¨ x&39;£©= x ¡£Õâ¿ÉÒÔÓëÑ¡Ôñ¼¯ÐòÁУ¨c£ºa £¼¡·£©Ò»ÆðʹÓã¬ÒÔÑ¡ÔñxµÈ¼ÛÀàµÄ³ÉÔ±£¬È¡¾öÓÚn¡£Ê¹ÓÃÇ°ÃæÌáµ½µÄ²»Í¬Ñ¡Ôñ¼¯ºÏ ca Ö®¼äµÄ¹Øϵ£¬ÎÒÃÇ¿ÉÒÔÕù±ç˵£¬ÕâЩÊý¾Ý¿ÉÒÔÒÔÕâÑùµÄ·½Ê½Ñ¡Ôñ£ºÓ³Éäµ½ x µÈ¼ÛÀàµÄÑ¡¶¨³ÉÔ±µÄº¯ÊýÓ³Éäʵ¼ÊÉÏÊÇ×îÖÕ³£Êý£¬²¢Çҵȼ۹Øϵ e µÄÑ¡Ôñ¼¯¿ÉÒÔͨ¹ýÕâÖÖ·½Ê½¹¹Ôì¡£

    È»¶ø£¬ÕâÒýÆðÁËʹÓÿâÄܲ»Ò»ÖÂÐÔ¶¨ÀíµÄÖ¤Ã÷·½·¨µÄì¶Ü¡£Õâ¸öì¶ÜÊÇ´ÓÒ»×é¼ÙÉèÖлñµÃµÄ£¬ÕâЩ¼ÙÉèͨ¹ý½öÇ¿ÖÆÏà¶ÔÓÚzf¼ÓÉÏ»ù±¾Ç¶Èëva+2£¼va+2µÄ´æÔÚÀ´Ö¤Ã÷ÊÇÒ»Öµġ£Òò´Ë£¬»ù±¾Ç¶Èë va +2£¼v1+2 µÄ´æÔÚʵ¼ÊÉÏÓë zf ²»Ò»Ö¡£

    6 a proof of the ultimate - l conjecture

    ÔÚ±¾½ÚÖУ¬ÎÒÃǽ«Ñ°ÇóÖ¤Ã÷ÐÝ¡¤Î鶡µÄÖÕ¼«-l²ÂÏë¡£ÐÝ¡¤Î鶡µÄÖÕ¼«-l¼Æ»®×îÖØÒªµÄÀ´Ô´ÊÇ[1]£¬[2]ºÍ[3]¡£ÎÒÃDZØÐëÊ×Ïȸø³ö¹«Àí v = ÖÕ¼« - l µÄ³ÂÊö£¬×ñÑ­ [3] µÄ¶¨Òå 714¡£

    ¶¨Òå 61¹«Àí v = ÖÕ¼« - l ±»¶¨ÒåΪ¶ÏÑÔ - tion

    £¨1£© ´æÔÚÒ»ÀàÊʵ±µÄÎ鶡»ùÊý¡£

    £¨2£©¸ø¶¨ÈκÎÔÚvÖÐΪÕæµÄ¡Æ2-¾ä×Óo£¬´æÔÚʵÊýaµÄµ¥Ïò-ÈøÀû±´¶û¼¯ºÏ£¬Ê¹µÃ£¬Èç¹û¨’£¨4r£©±»¶¨ÒåΪ×îСÐòÊý£¬Ê¹µÃÔÚl£¨a£¬r£©ÖÐûÓдÓrµ½¦¨µÄ³¬É䣬Ôò¾ä×Ó§æÔÚhod nvol£¨a£©ÖÐΪÕæ¡£r )

    ÏÖÔÚÈÃÎÒÃǻعËһϠ[3] ÖеÄÒ»×鶨Òå¡£

    ¶¨Òå 62¼ÙÉè n ÊÇ zfc µÄ´«µÝÕæÀàÄ£ÐÍ£¬ËüÊÇ v Öеij¬½ô»ùÊý¡£ÎÒÃÇ˵nÊdz¬½ôµÄÈõÀ©Õ¹Ä£ÐÍ£¬Èç¹û¶ÔÓÚËùÓÐy£¾£¬ÔÚpo£¨y£©ÉÏ´æÔÚÒ»¸öÕý³£µÄ¾«Ï¸s-ÍêÈ«²â¶È/¦Ì£¬¦Ì£¨n np6£¨a£©£©=1£¬¦Ì n n ¡Ê n¡£

    ¶¨Òå 63Ò»¸öÐòÁÐ n £º=£¨ na £º a € ord £© ÊÇÈõ e2- ¿É¶¨ÒåµÄ£¬Èç¹ûÓÐÒ»¸ö¹«Ê½ p£¨x£© ʹµÃ

    £¨1£© ¶ÔÓÚËùÓÐ b £¼ n £¼72£¼73£¬Èç¹û £¨na£© vn |b =£¨ na £© vns |b È»ºó £¨ na £© vhn |b =£¨ ng £©vn2|b =£¨ nao £©vn3|b ;

    £¨2£© ¶ÔÓÚËùÓÐ beord £¬ n |b =£¨ n £© v |b ±íʾ×ã¹»´óµÄ n£¬ÆäÖÐ £¬¶ÔÓÚËùÓÐ y £¬£¨n6£© h ={ a e v £¬£º v =0[ a ]}¡£¼ÙÉè ncv ÊÇÒ»¸öÄÚ²¿Ä£ÐÍ£¬Ê¹µÃ n = zfc ¡£Ôò n ÊÇÈõ¡Æ2- ¿É¶¨ÒåµÄ£¬Èç¹ûÐòÁÐ £¨nn v £º€ ord£© ÊÇÈõ e2- ¿É¶¨ÒåµÄ¡£

    ÎÒÃÇÏÖÔÚ¿ÉÒÔ³ÂÊöÎÒÃǼƻ®ÔÚ±¾½ÚÖÐÖ¤Ã÷µÄ½á¹û

    ¶¨Àí 64¼ÙÉèÓÐÒ»¸öÊʵ±µÄÀà a - ÿ¸ö¼«ÏÞÐòÊý a £¾0 µÄ¾Þ´ó»ùÊý¡£ÄÇôÒÔÏ°汾µÄÖÕ¼«-l²ÂÏ룬ÔÚ[3]Öиø³öΪ²ÂÏë741£¬³ÉÁ¢¡£

    ¼ÙÉèÕâÊÇÒ»¸ö¿ÉÀ©Õ¹µÄ»ùÊý£¨ÊÂʵÉÏ£¬ÈËÃÇÉõÖÁ¿ÉÒÔ¼ÙÉèdÊÇÒ»¸ö³¬½ô»ùÊý£©¡£È»ºóÓÐÒ»¸öÈõÀ©Õ¹Æ÷Ä£ÐÍn£¬ÓÃÓÚ³¬½ôÐÔ£¬Ê¹µÃ

    £¨1£©nÊÇÈõe2-¿É¶¨ÒåµÄ£¬²¢ÇÒn c hod ;

    (2£© n = v = ultinate - l¡±¡£

    £¨3£© n = gch ¡£

    ¶¨ÀíÖ¤Ã÷ 64ÈÃÎÒÃǸø³öÆÚ´ýÒѾõÄÖÕ¼«¶¨Òå - l ¡£ÎÒÃÇÉù³Æ½ÓÏÂÀ´ÊÇÖÕ¼« - l µÄÕýÈ·¶¨Ò壬¼ÙÉèÔÚ v ÖÐÓÐ×ã¹»¶àµÄ´ó»ùÊý£¬ÈçÔÚ¶¨Àí 64 µÄ¼ÙÉèÖÐÅÅÁС£µ±ÎÒÃǽøÐнÏÈõµÄ´ó - »ù±¾¼ÙÉèʱ£¬¶¨ÒåËüµÄÕýÈ··½·¨ÈÔÓдý·¢ÏÖ¡£

    ¼ÙÉèkÊÇw-¾Þ´óµÄ£¬ÈçÒ»¸öÐòÁУ¨kn£ºn £¼w£©Ëù¼ûÖ¤µÄÄÇÑù£¬ÏÔÈ»ÎÒÃÇ¿ÉÒÔÔÚ²»Ëðʧһ°ãÐÔµÄÇé¿öϼÙÉèºóÒ»¸öÐòÁÐÔÚhodÖУ¬ÎÒÃǽ«ÕâÑù×ö¡£ È»ºóÎÒÃÇ¿ÉÒÔ¿¼ÂÇËùÓÐÐÎʽµÄÐòÊý¼¯ºÏ j¡°£¾ÆäÖÐ £¾£º= sup { kn £º n e w } ¶ÔÓÚһЩÐòÁÐ £¨n £º n e w£© ¾ßÓÐÇ°ÃæÃèÊöµÄÐÔÖÊ£¬j ÊǾßÓÐÁÙ½çÐòÁÐ £¨kn £º n € w£© µÄ»ù±¾Ç¶Èë vx +1£¼ va +1¡£ÆäÖÐһЩÐòÊý¼¯½«³ÉΪ hod µÄ³ÉÔ±¡£ÎÒÃǽ« ultimate - l ¶¨ÒåΪ l µÄ×îСÀ©Õ¹£¬°üº¬ hod ÖдËÀàÐòÊý¼¯ºÏµÄÕæÀ೤¶ÈÐòÁеÄÿ¸ö³ÉÔ±£¬ÒÔÕâÖÖ·½Ê½´Ó w-¾Þ´ó»ùÊý k »ñµÃ£¬¶ÔÓÚ £¾ µÄÿ¸ö¿ÉÄÜÖµ£¬ÐòÁÐÖÐÕýºÃÓÐÒ»¸öÕâÑùµÄÐòÊý¼¯ºÏ j¡°a¡£

    Ëü½«´Ó±¾½ÚµÄ½á¹ûÒÔ¼°¹ØÓÚÖÕ¼« - l ²ÂÏëµÄÒÑÖª½á¹ûÖеóö£¬Èç´Ë¶¨ÒåµÄÖÕ¼« - l ʵ¼ÊÉϲ¢²»ÒÀÀµÓÚÐòÁеÄÑ¡Ôñ¡£ÔÚÕâ¸öÄ£ÐÍÖУ¬¶ÔÓÚÿһ¸ö¿ÉÄܵÄÁÙ½çÐòÁУ¬È·Êµ´æÔÚÖÁÉÙÒ»¸ö³õµÈǶÈëj£ºva +1 va +1£¬ÁÙ½çÐòÁУ¨kn £º n e w£©¡£

    hod ÓÉǶÈ벿·Ö¼ûÖ¤ v ÖÐij¸ö»ùÊýµÄ¾Þ´óÐÔ²úÉú¡£Ä£ÐÍÖбØÒªµÄ»ù±¾Ç¶Èë¿ÉÒÔʹÓÃÓë section ÀàËƵIJÎÊýÀ´¹¹Ôì

    3 Òò´Ë£¬Õâ¸öÄ£ÐÍÈÔ½«ÊÇÒ»¸öÄ£ÐÍ£¬ÓÃÓÚ¶ÏÑÔÿ¸ö¼«ÏÞÐòÊý a £¾0 ´æÔÚÒ»¸öÊʵ±µÄ a Àà - ¾Þ´óµÄ¿¨Äɶû¡£¸üÇå³þµØ¿´£¬Õâ¸öÄÚÄ£Ðͽ«Âú×ãgch£¬²¢ÇÒºÜÈÝÒ׿´µ½ËüÊÇÈõe2-¿É¶¨ÒåµÄ£¬²¢ÇÒÊÇhodµÄ×ÓÀ࣬²¢ÇÒÊÇÈκÎÔÚvÖг¬½ôµÄ»ùÊýµÄ³¬½ôÐÔµÄÈõÀ©Õ¹Ä£ÐÍ£¬¸ø¶¨ËùÊöµÄ´ó»ùÊý¼ÙÉèÔÚvÖгÉÁ¢¡£ÎªÁË¿´µ½×îºóÒ»µã£¬ÓбØÒª¹Û²ìµ½¸ø¶¨ËùÊöµÄ´ó»ùÊý¼ÙÉ裬Èκ㬽ô»ùÊý±ØÈ»Êdz¬¾Þ´óµÄ£¬²¢ÇÒËùÓбØÒªµÄ elementary12 ǶÈëÀ´¼ûÖ¤ÕâÒ»µãȷʵϽµµ½Ä£ÐÍ ultimate - l¡£ÎÒÃÇÏÖÔÚ±ØÐëÖ¤Ã÷£¬Õâ¸öÄ£ÐÍȷʵÊDZ¾½Ú¿ªÍ·ËùÊöµÄ¹«Àí v = ÖÕ¼« - l µÄÄ£ÐÍ¡£

    ÏÔÈ»£¬ÎÒÃǵÄÖÕ¼« - l °æ±¾ÊǶÏÑÔ´æÔÚÊʵ±ÀàµÄÎ鶡»ùÊýµÄÄ£ÐÍ¡£¼ÙÉèij¸ö ¡Æ2- ¾ä×ÓÔÚÖÕ¼« - l ÖÐΪÕ棬Òò´ËÎÒÃÇÐèÒªÔÚÖÕ¼« - l ÖÐÕÒµ½ÊµÊý a µÄ univer - sally baire ¼¯ºÏ£¬Ê¹µÃÓÐÎÊÌâµÄ ¡Æ2- ¾ä×ÓÔÚ £¨hod £©£¨ ar£© n v2l£¨ a ´ÓÖÚËùÖÜÖªµÄ·ºÐ;ø¶ÔÐÔ½á¹ûÖУ¬¼ÙÉèÎ鶡»ùÊýµÄÊʵ±Àà³ÉÁ¢£¬×ãÒÔÖ¤Ã÷ÕâȷʵÔÚij¸ö¼¯ºÏÖлñµÃ - ÖÕ¼« - l µÄ·ºÐÍÀ©Õ¹¡£Òò´Ë£¬Ñ¡ÔñÒ»¸öÐòÊýf£¬Ê¹µÃ£¨v2£©ÖÕ¼«-lÊÇÖÕ¼«-lµÄe2-»ù±¾×ӽṹ£¬²¢Ñ¡Ôñ£¼bµÄy£¬Ê¹µÃ£¨vn£©uimate - b½¨Ä£¡Æ2-¾ä×Ó¡£ÏÖÔÚ¿¼ÂÇ ultimate - l µÄ·ºÐÍÀ©Õ¹£¬ÆäÖÐ a ÊÇÑ¡Ôñ°üº¬×ã¹»Êý¾ÝµÄͨÓà baire ¼¯ºÏ£¬Òò´Ë£¬ÔÚ·ºÐÍÀ©Õ¹ÖУ¬ol £¨ar £©¡Ü b ºÍ £¨hod £© l £¨a r £© n v£¬ÔÚ·ºÐÍÀ©Õ¹ÖеÈÓÚµØÃæÄ£Ð͵ļ«ÏÞ-lºÍv2µÄ½»¼¯¡£Õâ¿ÉÒÔͨ¹ýÈ·±£Ã¿¸öСÓÚfµÄÐòÊýÔÚ·ºÐÍÀ©Õ¹Öб»ÕÛµþΪ¿ÉÊý£¬²¢ÇÒÉú³É£¨ultimate - lnv£©vËùÐèµÄСÓÚyµÄÐòÊý¼¯ºÏµÄËùÓÐÊý¾Ý¶¼±»±àÂëµ½·º±´¶û¼¯ºÏaÖУ¬¸Ã¼¯ºÏÔÚ·ºÐÍÀ©Õ¹ÖÐÏÔʾΪһ×éʵÊý¡£ÔÚÕâ¸ö·ºÐÍÀ©Õ¹ÖУ¬µÃµ½ de sired ½á¹û£¬ËùÒÔÇ°ÃæÌáµ½µÄ·ºÐ;ø¶ÔÐÔ½á¹û°µÊ¾ËüÔÚÎÒÃǵĻùÄ£ÐÍÖÐÒ²µÃµ½¡£ÕâÑù¾ÍÍê³ÉÁ˶¨Àí64µÄÖ¤Ã÷¡£

    ÎÒÃÇ»¹Ó¦¸Ã×¢Ò⣬Èç¹û v = ÖÕ¼« - l£¬ÄÇôÈç¹û k ÊÇ w - ¾Þ´óµÄ£¬Èç £¨k £º i £¼ w£© Ëù¼ûÖ¤µÄ£¬Ôò vk Ä£ÄâÁË´æÔÚÂú×ãÀ­ÎÖ¹«ÀíµÄÊʵ±ÀࣾµÄ¶ÏÑÔ£¬ÈçµÚ 3 ½ÚËù¶¨Ò壬Èç¹û k ʵ¼ÊÉÏÊÇ w - ¾Þ´óµÄ£¬Èç £¨kr £º i £¼ w £© Ëù¼ûÖ¤µÄ£¬Ôò vro Ä£ÄâÁË´æÔÚÒ»ÀàÊʵ±µÄÀ­Ä·Æë»ùÊýµÄ¶ÏÑÔ¡£

    7 concluding remarks

    ÐµĴó»ùÊýÊܵ½Î¬¶àÀûÑÇ¡¤ÂíЪ¶ûÔÚ[5]ÖйØÓÚ·´ÉäÔ­ÀíµÄ¹¤×÷µÄÆô·¢£¬²¢ÇÒËƺõÊÇËýÔÚÄDz¿×÷Æ·ÖÐÖ¤Ã÷µÄ·´ÉäÔ­ÔòµÄÕýÈ·¸ÅÀ¨£¬°µÊ¾ÁËn¸ö´ó»ùÊýµÄ´æÔÚ¡£ÓÃÓÚÖ¤Ã÷ÖÕ¼« - l ²ÂÏëµÄ´ó cardi - nal ¹«Àíµ±È»¾ßÓÐÏ൱ʵÖÊÐÔµÄÒ»ÖÂÐÔÇ¿¶È£¬²¢ÇÒ¶ÔÆä consis - tency ÔÚÏֽ׶ο϶¨ÊÇÏ൱ºÏÀíµÄ£¬µ«Ëü¿ÉÄÜÊÇеĴó - »ùÊý¹«ÀíºÍÖÕ¼« - l ³ÌÐò 13

    ½øÒ»²½Ñо¿ÖÕ¼« - l µÄÄÚÔÚÄ£ÐÍÀíÂۺʹÓÄÚ²¿½üËÆËüµÄÄÚÔÚÄ£Ðͽ«ÌṩеÄÊÓÒ°ºÍÔö¼ÓÒ»ÖÂÐÔµÄÐÅÐÄ¡£Í¬Ê±£¬ºÜ¿ÉÄÜÖÕ¼«-l²ÂÏë¿ÉÒÔÏñÐÝ¡¤Î鶡×î³õÉèÏëµÄÄÇÑù£¬´ÓÒ»¸ö¿ÉÀ©Õ¹µÄ»ùÊýÀ´Ö¤Ã÷£¬ËùÒÔÔÚÕâ¸öÒâÒåÉÏ»¹Óкܶ๤×÷Òª×ö¡£

    Èç¹ûÕâЩеĴó»ùÊýȷʵÊÇÒ»Öµģ¬ÄÇô¶ÔËüÃǵÄÑо¿ËƺõÊÇÏ൱¸»ÓгÉЧµÄ£¬²¢ÇÒ¿ÉÄÜÊÇÔÚzfcÖÐÌí¼ÓÒ»¸ö¹«Àíģʽ£¬¶ÏÑÔÿ¸ön£¼w´æÔÚÒ»¸ö³¬-¾Þ´óµÄ»ùÊýkʹµÃv e£¬v£¬Á¬Í¬¹«Àív = ultimate - l£¬ ×îÖÕ½«±»½ÓÊÜΪvµÄÕýÈ·¡°ÓÐЧÍ걸¡±ÀíÂÛ£¬¼ÙÉèÖÃÐŶÈËæ×Åʱ¼äµÄÍÆÒƶø·¢Õ¹£¬Ö¤Ã÷Õâ¸öÀíÂÛÊÇÒ»Öµġ£

    ²Î¿¼ÎÄÏ×

    [1] ÐÝ¡¤Î鶡 ºÏÊʵÄÀ©Õ¹¹¹Ôì i journal of mathematical logic £¬ vol 10£¬ nos 1&2£¨2010£©£¬ pp 101-339

    [2] ÐÝ¡¤Î鶡 ºÏÊʵÄÀ©Õ¹¹¹Ôìii£º³¬Ô½w-¾Þ´ó¡£Êýѧ-ÊýѧÂß¼­ÔÓÖ¾£¬µÚ11¾í£¬µÚ2ÆÚ£¨2011£©£¬µÚ151-436Ò³¡£

    [3] ÐÝ¡¤Î鶡 Ñ°ÕÒÖÕ¼« - l £º µÚ19½ìÃ×µÂÀ­É³Êýѧ½²×ù ·ûºÅÂß¼­Í¨±¨£¬23£¨1£©£¬1-109

    [4] ά¶àÀûÑÇ¡¤¼ªÌØÂüºÍÀ­¶û·ò¡¤ÐÁµÂÀÕ¡£ÓÐЧ´ó»ùÊý£¬Ô¤´òÓ¡¡£

    [5] Ã× Î¬¶àÀûÑÇ¡¤ÂíЪ¶û¡¤¸ß½×·´ÉäÔ­Àí£¬¡¶·ûºÅÂß¼­Ñ§±¨¡·£¬µÚ54¾í£¬µÚ2ÆÚ£¬1989Ä꣬µÚ474-489Ò³¡£[6] ¼Ó²¼Àï°£¶û¡¤¸êµÂ±¤ ¹ØÓÚÀ³Òò¹þÌØ»ùÊýµÄÒ»ÖÂÐÔÇ¿¶È£¬Ô¤Ó¡¡£

    ¡¾ÖÕ¼«-lÖ»ÊǾø¶ÔÎÞÇî¸ÅÄîÀïµÄÒ»²¿·Ö£¬¾ø¶ÔÎÞÇî²»ÊÇÖÕ¼«-l£¨×¢Ò⣬ÕâÎÄÕÂÖеľø¶ÔÎÞÇî²¢·Ç¿µÍжûµÄ¾ø¶ÔÎÞÇÕâ¾ø¶ÔÎÞÇîÊÇÒ»ÖÖ¸ÅÄÊÇÒ»ÖÖ³¬Ô½ÊýѧµÄ¸ÅÄ¿µÍжûµÄ¾ø¶ÔÎÞÇîʵÖÊÉÏÒ²ÊÇÒ»ÖÖ¸ÅÄî¡£¿µÍжûµÄ¾ø¶ÔÎÞÇîÊÇÎÞÏÞµÄÑÓÕ¹£¬°¢ÁзòµÄÑÓÕ¹£¬ÊµÖÊÉÏÒ²ÊÇÎÞÉÏÏ޵ģ¬ÕâÎÄÕÂÖеľø¶ÔÎÞÇԽÁËÒ»ÇÐÊýѧ¼¯ºÏÓëÊýѧ¹«Àí£©Ö®ËùÒÔ²»°Ñ¹¹Ôì·Å½øÕýÎÄÀÊÇÒòΪÕýÎÄÀïÐèÒª¾çÇ飬µ±ºó±ß½éÉܸ÷ÖÖÉñÃ÷ÊÇÓîÖæ±ãÒÔ¾ø¶ÔÎÞÇî×÷Ϊµ¥Î»Ê¹Ó㬻òÕßÓÐЩÓôó»ùÊýΪµ¥Î»Ê¹Óã¬ÕýÎÄÖо¡Á¿ÉÙ·ÅЩ¹¹Ô죬ÃèÊö¾ÍÐС£ÁíÍ⣬´ËÎĽûÖ¹ÄÃÈ¥±ÈÕ½Á¦¡£¡¿
<< ÉÏÒ»Õ ·µ»ØĿ¼ ÏÂÒ»Õ >>
Ìí¼ÓÊéÇ©